

Fraunhofer Institute for Integrated Systems and Device Technology IISB

Kommunale Wärmeversorgung – Herausforderungen und Lösungen

Simulationsbasierte Entwicklung von Betriebsstrategien für Wärmenetze und -komponenten

Dr. Christopher Lange, Christian Rettenbeck

Inhalte des Vortrags

- 1. Motivation für die simulationsbasierte Entwicklung Wo liegen die Schwierigkeiten bei der Optimierung von Energiesystemen?
- 2. Optimierung von Energiesystemen
 Wie sehen Betriebsstrategien aus und wie werden Simulationen eingesetzt?
- 3. Kurzvorstellung von VK Energie Flexibilität optimal für die Energiewende nutzen
- **4. Optimierung von Wärmenetzen**Mehrstufige simulationsgestützte Betriebsoptimierung

Motivation

Motivation für Einsatz von Simulationen

Komplexität, Vorgehen

Public

Motivation

Was macht die Optimierung von Energiesystemen so schwierig?

Komplexe Energieinfrastrukturen mit enger Kopplung der (Sub)Systeme

Gekoppelte Energiesysteme mit verschiedenen Energiesektoren

- Elektrische Netze (AC und DC)
- Wärme & Kälte (Heizung, Lüftung, Klimatisierung, Prozesskühlung)
- Gase (Wasserstoff, Erdgas, Prozessgase)
- Druckluft, Vakuum

Die Energiesektoren sind über Erzeugungsanlagen gekoppelt

- Optimierung einer Komponente oder eines Subsystems führt nicht unbedingt zu einer Verbesserung des Gesamtsystems
- Daher müssen bei der Optimierung alle Zusammenhänge zwischen den Komponenten und Netzen bei berücksichtigt werden

Hohe Anzahl von Randbedingungen, Einschränkungen und Optimierungszielen

Randbedingungen der Komponenten

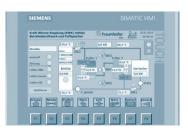
- Verschiedene Klassen von Komponenten: Import/Export, Erzeugungsanlagen, Energiespeicher and Verbraucher
- Jede Komponente besitzt individuelle Randbedingungen, wie z. B. Nennleistungen, Ladezustandsgrenzen, dynamisches Verhalten...

Typische Optimierungsziele in Energiesystemen

- Eigenversorgungsoptimierung durch erneuerbare Energien
- Effizienz der Erzeugungsanlagen und Energieverteilung
- Lastspitzenreduktion und -verschiebung
- → Emissionsreduzierung, Kosteneinsparungen
- Ganzheitliche Betrachtung des zu optimierenden Energiesystems nötig
- Hohe Komplexität erfordert Hilfsmittel bei der Optimierung

vgl. [1]


Motivation


Schritte bei der Energiesystemoptimierung

Vorgehen bei der Optimierung von Energiesystemen

Datenakquise und -analyse

- Aufbereitung
- Auswertung

- Entwicklung Betriebsstrategien
- Anlagenebene
- Energiemanagement

Simulation und Optimierung

- Modellierung, Szenarien
- Dimensionierung

Implementierung

- Automatisierung
- Monitoring

Unterstützung durch Simulationen (Analyse, Entwicklung, Optimierung)

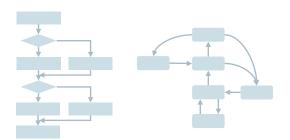
Public

Überführung in Realität

Betriebsstrategien

Optimierung von Energienetzen Betriebsstrategien

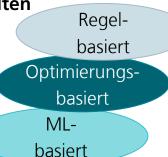
Public


Betriebsstrategien

Formulierungsarten

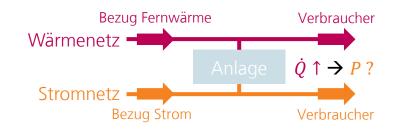
Formulierung von Betriebsstrategien zur Umsetzung in realen Anlagen

Betriebsstrategien können in verschiedenen Formen formuliert werden und verschiedene Komponenten beinhalten


- Entscheidungsbäume oder Programmablaufpläne ("if/elsif/else")
- Deterministische, endliche Zustandsautomaten bzw. -maschinen
- Mathematische Zusammenhänge, z. B. Verfahren wie PID-Regler oder MPC (Model Predictive Control)
- Optimierungsfunktionen, z. B. MILP (Mixed-Integer Linear Programming)
- Machine learning (z. B. lineare Regression, Support Vector Machine, K-Nearest Neighbor, Random Forest etc.) oder deep learning (z. B. künstliches neuronales Netzwerk) Modelle
- → Es sind auch Kombinationen aus mehreren der gezeigten Formen möglich

$$y_k = K_p \cdot \left[e_k + \frac{\Delta t}{T_I} \sum_{j=0}^k e_j + \frac{T_d}{\Delta t} \cdot (e_k - e_{k-1}) \right]$$
 with $e_k = u_k - x_k$

Maximize $c^T x$ Subject to Ax + s = b, $s \ge 0, x \ge 0$, and $x \in \mathbb{Z}^n$


Betriebsstrategien

Wirkungsweise

Kategorisierung der Anlagen

Gründe für die Unterteilung in Kategorien

- verschiedene Wirkungsweisen von enthaltenen Speichern
- unterschiedliche Einflüsse auf die gekoppelten Netze

Beispiel: Wirkungsweise auf elektrisches Netz

Elektrische Speicher

Entladung führt zu (temporär) verringertem elektrischen Bedarf

→ geringere Bezugsleistung

Speicher stellt die benötigte elektr. Leistung direkt bereit (Entladung)

Beispiele: Lithium-lonen-Batterie,

Redox-Flow-Batterie

Zuschaltbare Erzeuger

Zuschaltung führt zu (temporär) erhöhter lokaler Erzeugung

→ geringere Bezugsleistung

Speicher nimmt die "überschüssige" Sekundärenergie (z. B. Wärme) auf

Beispiele:

Blockheizkraftwerk,

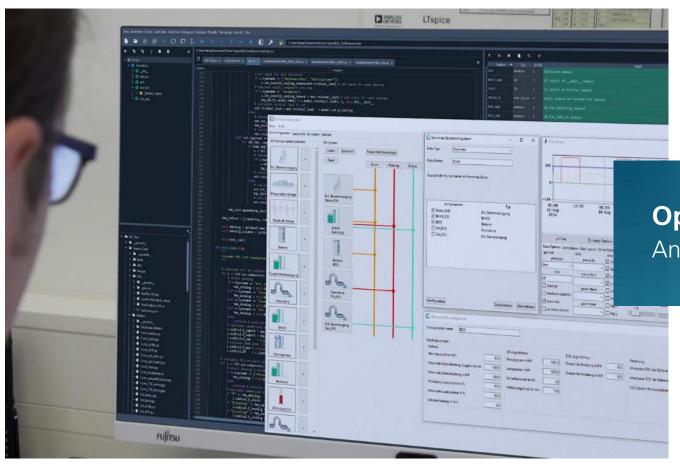
Brennstoffzelle

Abschaltbare Verbraucher

Abschaltung führt zu (temporär) verringertem elektrischen Bedarf

→ geringere Bezugsleistung

Speicher übernimmt in der Zwischenzeit die (teilweise) Versorgung


Beispiele:

Kältemaschine,

Wärmepumpe

Public

Optimierung von Energienetzen Anwendung von Simulationen

Grundlagen

Von der Simulation zum realen System

Was ist eine Simulation?

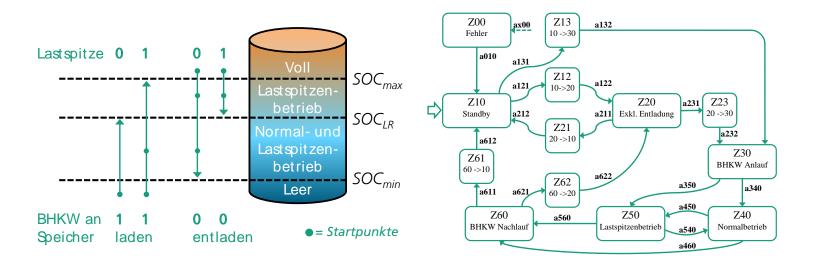
- Nachbildung eines realen Prozesses, Systems oder Ereignisses mit Hilfe eines Modells
- Einsatz: Vorhersage, Analyse und Verständnis des Verhaltens und der Auswirkungen des realen Systems
- Manipulation von Variablen und Eingangsparametern, um verschiedene Szenarien zu untersuchen und mögliche Ergebnisse abzuleiten
- → Abbildung auch von sehr komplexen Systemen, die nicht (vollständig) theoretisch und formelmäßig beschreibbar sind

Warum Simulationen statt Experimente?

Untersuchung am realen System zu aufwendig/teuer/gefährlich/..., reales System existiert (noch nicht), reales System zu komplex etc.

Wozu werden Simulationen im Bereich der Energiesysteme eingesetzt?

- Planung und Optimierung, z. B. Integration erneuerbarer Energien
- Lastprognose, z. B. für den effizienten Einsatz der vorhandenen Erzeugungsanlagen
- Netzanalyse und –management, z. B. Untersuchung von Störungen und Netzstabilität
- Energieeffizienzerhöhung, z. B. durch intelligente Betriebsstrategien und Regelungsverfahren
- etc.



Beispiel vom IISB

Nutzung BHKW zur Wärme-/Stromversorgung und zur Lastspitzenreduktion

- Wärmespeicher wird virtuell in Ladezustandszonen unterteilt
- Eine dieser Ladezustandszonen wird exklusiv für die Lastspitzenreduktion reserviert
- Zustandsautomat zur Ablaufsteuerung sowie zur Ansteuerung der Stellglieder
- Vorteil: Auch bestehende Systeme können mit dieser Betriebsstrategie nachgerüstet werden

Blockheizkraftwerk des Jahres 2020

BHKW des Fraunhofer-Instituts für Integrierte Systeme und Bauelementetechnologie IISB

"BHKW des Monats Juni 2020" von Energie & Management

Betreiber: Fraunhofer-Institut für Integrierte Systeme und Bauelementeterhnologie IISB

BHKW-Lieferant: Tuxhorn Blockheizkraftwerke GmbH

Das Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB aus Erlangen hat eine neu entwickelte intelligente Betriebsstrategie zur Lastspitzenreduktion umgesetzt.

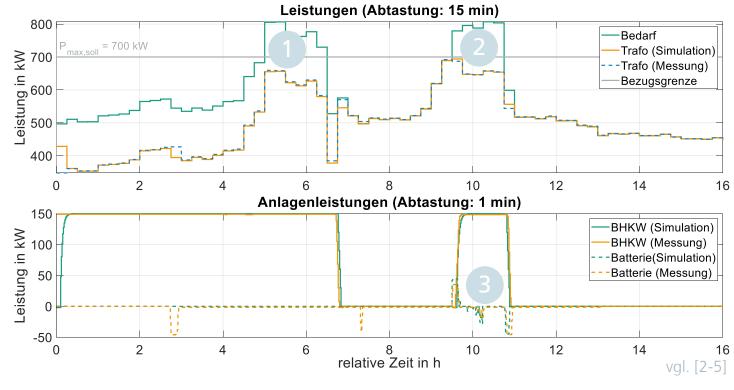
Das Zusammenspiel von Anlagentechnik, Strom- und Wärmeversorgung sowie intelligenter Betriebsstrategie einerseits und Wissenschaft andererseits hat zu einem beeindruckenden Ergebnis beim Anlagenkonzept geführt und überzeugte die Jury. Das hier gewählte Energieversorgungskonzept kann seine Vorbläcknirkung für Anlagen zur Energievende entfalten.

Beispiel vom IISB

BHKW mit Wärmespeicher und Batterie

Vergleich Simulationsergebnis mit Messung aus dem Reallabor am Fraunhofer IISB

Zwei Lastspitzen erkennbar


BHKW läuft bereits → keine Aktion erforderlich

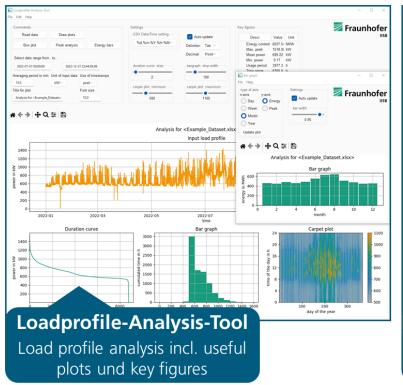
BHKW wird zugeschaltet

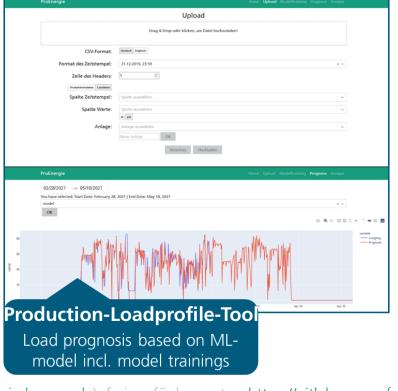
 Batterie überbrückt bei den Anfahrvorgang des BHKW und wird mit überschüssiger Leistung geladen

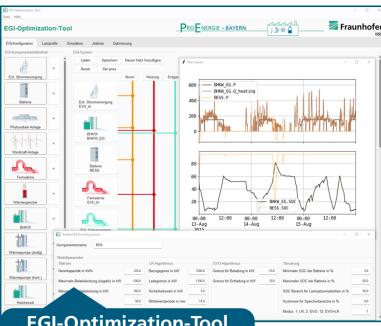
Ergebnisse

- Reduktion der Lastspitze um 14 % → 15.000 € Ersparnis pro Jahr bei LP von 150 €/kW
- Simulation und Messungen stimmen sehr gut überein
 - MAE (Trafo 15 min) liegt bei 3,9 kW
 - Max. Abweichung liegt bei ca. 25 kW

Public

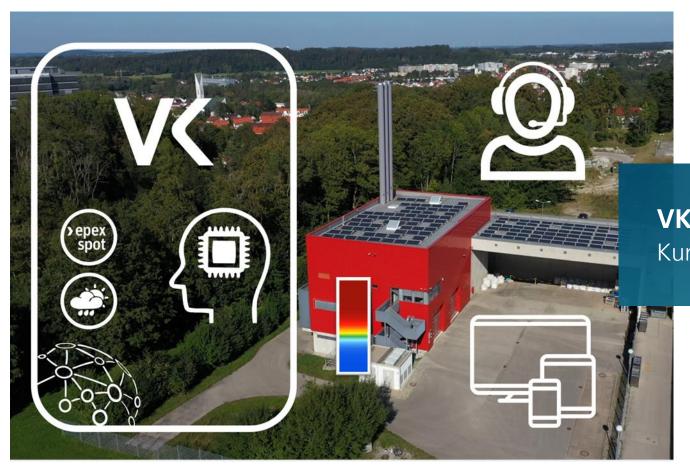



Open-Source Softwaretoolbox für die Optimierung der EGI


PRO FNERGIE - BAYERN

Übersicht über die Softwaretoolbox

EGI-Optimization-Tool


Simulation and optimization of the free configurable EGI

Screenshots der ProEnergie-Softwaretools (https://proenergie-bayern.de), frei verfügbar unter: https://gitlab.cc-asp.fraunhofer.de/proenergie

vgl. [6,7]

VK Energie

VK Energie

Kurzvorstellung und Leistungen

VK Energie

optimieren wir erfolgreich Energiesysteme

seit 2017 > 100 Kunden

aus Energieversorgung und Industrie

>300 MW

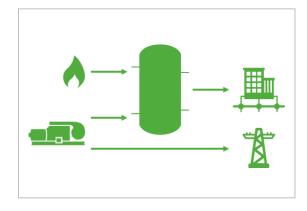
elektrische Leistung in unserem Anlagenportfolio

20 Personen

arbeiten für Ihren Erfolg

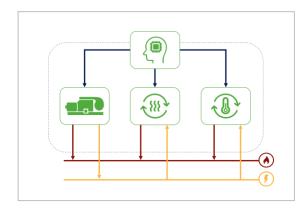
Public

Seite 15 15 05 2024 © VK Energie


VK Energie

Unsere Leistungen

V Betriebsoptimierung


Einsatzbereiche

KWK-Anlagen

V Simulation

iKWK-Systeme

V Redispatch

Dezentrale Energiesysteme

Optimierung von Wärmenetzen

Optimierung von Wärmenetzen
Simulationsgestützte Betriebsoptimierung

VK Betriebsoptimierung

Seite 18

15.05.2024

Mehrstufiger Optimierungsprozess

Langzeitoptimierung täglich Einhaltung von Jahres- und Monatszielen Flexprämie, Primärenergiefaktor, iKWK-Referenzwärme etc. **Day-Ahead Optimierung** täglich Optimierter Fahrplan für alle Erzeuger an allen Märkten > epexspot KI-basierte Prognosen Aktives Wärmespeichermanagement alle 15 min **Intraday Optimierung** Berücksichtigung von live Preissignalen, Störungen etc. > epexspot KI-basierte Prognosen Fahrplantreue & Vermeidung von Ausgleichsenergie **Echtzeitregelung** live Einhaltung der Wärmeverpflichtung Dynamische Erzeugerpriorisierung Leistungsregelung aller Erzeuger (Störungsvermeidung und optimale Speicherausnutzung) Ständiges Monitoring der Ergebnisse/Messdaten durch das VK-Operations-Team

© VK Energie Public

VK Betriebsoptimierung

Multi Market Optimierung

EIN Optimierungsmodell

Bestandteil der **V**(Betriebsoptimierung

vgl. [8]

Seite 19 15.05.2024 © VK Energie **Public**

Referenz: Stadtwerke Georgsmarienhütte

CO₂-Einsparung durch Abwärmenutzung

CO2-Einsparung durch Abwärmenutzung

- BHKW-Betrieb (Biomethan) in Kombination mit Abwärmenutzung aus einem Stahlwerk
- Zusätzliche laufende Prognose der Stahlwerk-Abwärme
- Spotmarktoptimierung mit gleichzeitiger Regelleistungsvermarktung

Mehrerlöse

80 € pro MWh Mehrerlöse

330.000 € pro Jahr

CO₂-Einsparung

220 Tonnen pro Jahr

Public

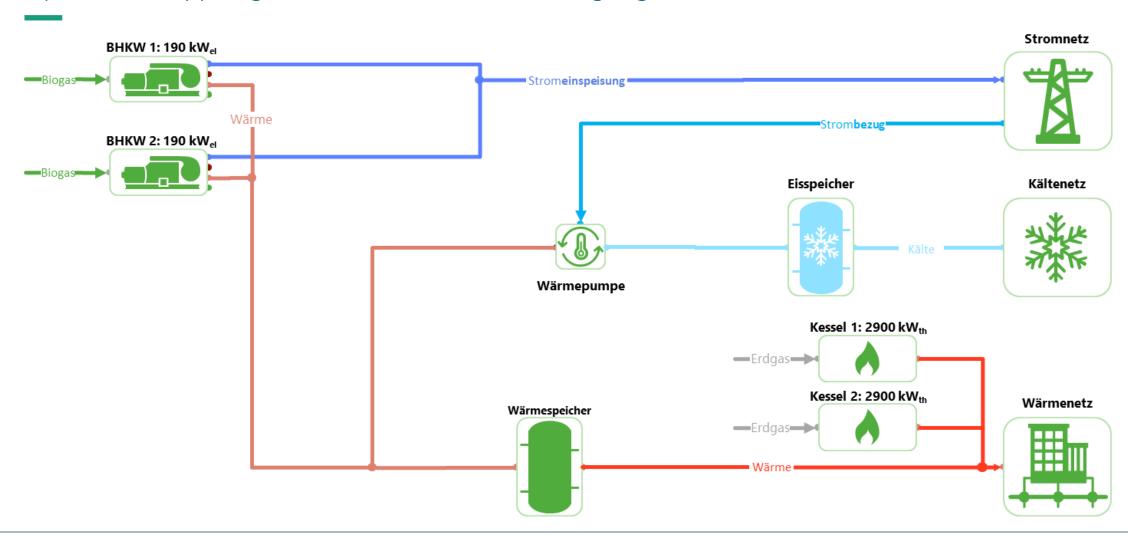
Anlagensteckbrief Georgsmarienhütte

1 x 2 MW_{el} BHKW

1 x 2,5 MW_{th} Gaskessel

1 x 4,5 MW_{th} Ölkessel

3.800 m³ Wärmespeicher



Seite 20

Referenz: REWAG

Optimierte Kopplung von Wärme- und Kälteerzeugung

Referenz: REWAG

Optimierte Kopplung von Wärme- und Kälteerzeugung

Optimierte Kopplung von Wärme- und Kälteerzeugung

- Stabile Kälteversorgung im Sommer bei gleichzeitiger optimaler Abwärmenutzung im Fernwärme-Netz
- Prognose f
 ür K
 älte- und W
 ärmebedarf
- Simultanes Wärmespeichermanagement für Eis- und Heißwasserspeicher
- Reduktion des Biomethaneinsatzes durch optimierte Nutzung von Abwärme aus der Kälteerzeugung

Mehrerlöse

49 € pro MWh Mehrerlöse

40.000 € pro Jahr

CO₂-Einsparung

220 Tonnen pro Jahr

Anlagensteckbrief Marina Quartier

2 x 190 kW_{el} BHKW

2 x 2,9 MW_{th} Gaskessel

2 x 300 kW_{th} Kältemaschinen

20 m³ Wärmespeicher

7 m³ Eisspeicher

Seite 22 15.05.2024 © VK Energie Public

Relevante Publikationen

- C. Lange, R. Öchsner, J. Geiling, A. Rueß. "Intelligent Energy Management". Presentation (2022). Fraunhofer IISB. DOI: 10.13140/RG.2.2.33911.29602.
- C. Lange. "Energiesektoren-übergreifende Lastspitzenreduktion mit elektrischen und thermischen Energiespeichern". PhD-Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) (2021). URN: urn:nbn:de:bvb:29-opus4-169778.
- C. Lange. "BHKW des Jahres 2020. BHKW mit Wärmespeicher und Batterie zur Strom-/Wärmeversorgung sowie Lastspitzenreduktion". Presentation. BHKW 2021 Innovative Technologien und neue Rahmenbedingungen, 09.11.2021 – 10.11.2021, Magdeburg (2021). DOI: 10.13140/RG.2.2.26423.80803.
- C. Lange, A. Rueß, A. Nuß, R. Öchsner, M. März. "Dimensioning battery energy storage systems for peak shaving based on a real-time control algorithm". Applied Energy 280 (2020), 115993. ISSN: 306-2619. DOI: 10.1016/j.apenergy.2020.115993.
- R. Öchsner, A. Nuß, C. Lange, A. Rueß. "Research Platform: Decentralized Energy System for Sector Coupling". Chemical Engineering & Technology 42.9 (2019), S. 1886–1894. DOI: 10.1002/ceat.201800714.
- A. Trenz, C. Hoffmann, C. Lange, R. Öchsner. "Increasing energy efficiency and flexibility by forecasting production energy demand based on machine learning". Manufacturing Driving Circular Economy. Hrsg. von Kohl, H., Seliger, G., Dietrich, F. GCSM 2022. Lecture Notes in Mechanical Engineering. Cham: Springer. DOI: 10.1007/978-3-031-28839-5 50.
- IISB. "Kosten und CO₂-Emissionen einsparen durch intelligentes Energiemanagement: Open-Source-Softwaretoolbox für Unternehmen". Press release (2023). Available online: www.iisb.fraunhofer.de/en/press media/press releases/pressearchiv/archiv 2023/open-source-softwaretoolbox.html (access: 29.04.2024).
- A. Zeiselmair, A. Möbius, J. Jungwirth und T. Kern. "Optimierte Intraday-Vermarktung von dezentralen Wärme- und Kälteerzeugern". Energiewirtschaftliche Tagesfragen 73 Jahrgang 2023, Heft 11.

Fraunhofer Institute for Integrated Systems and Device Technology IISB

Vielen Dank für Ihre Aufmerksamkeit

Dr.-Ing Christopher Lange Fraunhofer IISB Schottkystraße 10 | 91058 Erlangen

<u>christopher.lange@iisb.fraunhofer.de</u> <u>www.iisb.fraunhofer.de</u> Christian Rettenbeck VK Energie GmbH Goethestraße 25 a | 80336 München

<u>christian.rettenbeck@vk-energie.de</u> <u>www.vk-energie.de</u>